Screening sensitive nanosensors via the investigation of shape-dependent localized surface plasmon resonance of single Ag nanoparticles.
نویسندگان
چکیده
Understanding the localized surface plasmon resonance (LSPR) of differently shaped plasmonic nanoparticles benefits screening and designing highly sensitive single nanoparticle sensors. Herein, in the present work, we systematically investigated the shape-dependent scattering light colours and refractive index (RI) sensitivity of Ag nanoparticles (AgNPs) at the single nanoparticle level using conventional dark-field light scattering microscopy and spectroscopy. AgNPs in various shapes and scattering colourful light were synthesized, and the shape effect on the scattering light colour was determined by the colocalization of the same nanoparticles with dark-field microscopy (DFM) and scanning electron microscopy (SEM). The results showed that the AgNPs that scattered blue, cyan, yellow, and red light are spheres, cubes, triangular bipyramids, and rods, respectively, which enable us to directly recognize the shape of AgNPs through dark-field microscopy instead of electron microscopy. Further studies on investigation of the scattering spectral responses of single AgNPs to their surrounding solvents show that the RI sensitivity of AgNPs of different shapes followed the order of rods > cubes > triangular bipyramids > spheres. Among the commonly studied AgNPs, Ag nanorods have the highest RI sensitivity, which increases as the aspect ratio increases. Then, AgNPs of various shapes were used as single nanoparticle sensors for probing the adsorption of small molecules.
منابع مشابه
Antibody Conjugated Gold Nanoparticles for Detection of Small Amounts of Antigen Based on Surface Plasmon Resonance (SPR) Spectra
In this paper, a fast and sensitive localized surface plasmon resonance (LSPR) based biosensor was developed and the optimization of gold – antibody conjugates through investigation of different parameters were performed. Gold nanoparticles (AuNPs) with a size of ~20 nm were synthesized via chemical reduction of HAuCl4 with trisodium citrate as reducing and stabilizing agent. The impacts of pH ...
متن کاملHydrogen sensing by localized surface plasmon resonance in colloidal solutions of Au-WO3-Pd
Nowadays, hydrogen has attracted significant attention as a next generation clean energy source. Hydrogen is highly flammable, so detection of hydrogen gas is required. Gold nanoparticle based localized surface plasmon resonance (LSPR) is an advanced and powerful sensing technique, which is well known for its high sensitivity to surrounding refractive index change in the local environment. We p...
متن کاملTunable Plasmonic Nanoparticles Based on Prolate Spheroids
Metallic nanoparticles can exhibit very large optical extinction in the visible spectrum due to localized surface plasmon resonance. Spherical plasmonic nanoparticles have been the subject of numerous studies in recent years due to the fact that the scattering response of spheres can be analytically evaluated using Mie theory. However a major disadvantage of metallic spherical nanoparticles is ...
متن کاملLocalized surface plasmon resonance of single silver nanoparticles studied by dark-field optical microscopy and spectroscopy.
Localized surface plasmon resonance (LSPR) of Ag nanoparticles (NPs) with different shapes and disk-shaped Ag NP pairs with varying interparticle distance is studied using dark-field optical microscopy and spectroscopy (DFOMS). Disk-, square-, and triangular-shaped Ag NPs were fabricated on indium tin oxide-coated glass substrates by electron beam lithography. The LSPR spectra collected from si...
متن کاملDispersion and shape engineered plasmonic nanosensors
Biosensors based on the localized surface plasmon resonance (LSPR) of individual metallic nanoparticles promise to deliver modular, low-cost sensing with high-detection thresholds. However, they continue to suffer from relatively low sensitivity and figures of merit (FOMs). Herein we introduce the idea of sensitivity enhancement of LSPR sensors through engineering of the material dispersion fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 5 16 شماره
صفحات -
تاریخ انتشار 2013